

Page 1 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

Text transcript of show #119

June 26, 2008

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

Scott chats with Ken Schwaber, the co-creator of Scrum, agile advocate and a founder of the Agile
Alliance. Scott asks 'What is the definition of Done?' and gets a more complicated (and more interesting!)

answer than he bargained for.

(Transcription services provided by PWOP Productions)

Our Sponsors

Hanselminutes is a weekly audio talk show with noted web developer
and technologist Scott Hanselman and hosted by Carl Franklin. Scott
discusses utilities and tools, gives practical how-to advice, and
discusses ASP.NET or Windows issues and workarounds.

http://www.telerik.com

http://www.nsoftware.com

http://dotnet.sys-con.com

 Copyright © PWOP Productions Inc.

Page 2 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

Lawrence Ryan: From hanselminutes.com, i t 's
Hanselminutes, a weekly discussion with web
developer and technologist, Scott Hanselman, hosted
by Carl Franklin. This is Lawrence Ryan, announcing
show #119, recorded live Wednesday, June 18, 2008.
Support for Hanselminutes is provided by Telerik
RadControls, the most comprehensive suite of
components for Windows Forms and ASP.NET web
applications, online at www.telerik.com, and by the
CodeBetter Blog Network, delivering tried and true
solutions to real world problems for building better
software, online at codebetter.com. Support is also
provided by .NET Developers Journal, the world's
leading .NET developer magazine, online at www.sys-
con.com. In this episode, Scott talks with Scrum
creator and founder of the Agile Alliance, Ken
Schwaber.

Scott Hanselman: Hi, this is Scott Hanselman and
this is another episode of Hanselminutes, and I'm
sitting here in Oslo, Norway, with Ken Schwaber co-
inventor of Scrum, founder of Agile Alliance and all
around agile advocate. We were lucky enough to be
on an agile panel this morning with a number of agile
luminaries but I'm sitting down here with Ken and
we're going to talk about agile, agility software
process, but you had said sir that you thought that
one of the things that needed to be talked about was
'What is Done?'.

Ken Schwaber: Yes.

Scott Hanselman: Which was surprising to me
that that was what you thought was the most
interesting thing we should talk about, 'what is the
definition of done'?

Ken Schwaber: Well, done is a very simple
word and Bill Clinton started this with simple words
when he talked about this during his presidency.
Done is something where if I come in to a company
and they say, "Oh, we're using Scrum." It's a smell for
me about whether they're using Scrum or not. So, if I
turn to the person who is a customer or even a team
and I say, "What is your definition of done?" and they
give me kind of a blank look, to me this is a smell that
they haven't addressed one of the key issues in
Scrum and that is when they select some items that
they are going to do for a sprint that is some items,
some requirements and product, they are clogged
items and storage that they say they will do for the
customer during an iteration which we call a sprint,
and they don't know what Done or Do is, this certainly
raises a question to me about how they know what
they're doing because if they don't know what Done
is, that is, is it coded, is it unit tested after it has been
coded, is it maybe even refactored, does it include a
design review, a code review, d o e s it include
performance testing, wha t does it include? If that
person or their team that's working on things for the
customer doesn't know what Done is, then you have
to ask a question about how do they know how many

things they should select during an iteration. If it's just
coded and maybe unit tested, maybe they can do 10
or 12 or maybe even 20 items during a whole sprint.
So if it's both analyzed, designed, there's been unit
tested, there's been coding, there's been testing,
there's been refactoring, and a whole set of things are
needed to be done for it to be potentially shippable,
then maybe they could only do one thing. So you
have to wonder how they know how many things to
select from the product backlog to do if they don't
know what Done is. This also raises the question of
what sort of expertise or engineering skills do they
have if they are not sure what they do when they
select something to be done and this, of course, then
raises the question of undone work. When they get
done with the sprint and they've done five things for a
product owner, the product owner, if maybe the total
of done things that they need are 30 might believe
that they are 1/6th of the way complete and ready for
shipment. However, if the team's definition of Done is
only coded and unit tested, maybe the product owner
is only 1/40th of the weight done, and when the team
gets done with the 6th sprint and says, "Here we are
product owner, we're done," and the product owner
says, "Great. Let's ship." Then the team has to look
him in the eye and say, "Well, that's not quite the
definition of Done we had. Now, we've got to do all
the rest of the test ing and refactoring and the
stabilizing of the code to make it so it is really
shippable so maybe in about two or three months."
So, this is why Done for me tends to be a pretty big
issue of engineering skills, of the relationship between
the product owner and the customer, beyond
engineering competence of the team that is doing the
work.

Scott Hanselman: It sounds like, from the way
that you're painting it, that Done is the only point. It
also seems like one could build up a great deal of
technical death even within just a short iterations but
more importantly that sitting down in its step zero
saying what is done for us could expose a number of
technical deficiencies in an organization. You're
illustrating that there could be cancer in the
organization like we have virtually no technical writing
or we have insufficient integration testing so we might
not even be able to appropriately begin a sprint until
we work these other things out.

Ken Schwaber: If I listed a number of things to
be done to a customer requirement before it's
potentially shippable, I've tried that and the list is
about 45 to 50 items, things that need to be done, and
if a team is only capable, if you go through this with a
set of group of engineers, group of developers which
includes programmers, analysts, designers, QA
people, documentation people and say how much of
this can you do in a sprint, it's very often that they can
only do 15 or 20. They're going to look at a whole
bunch of those like the performance testing, the
quality testing, the regression testing, then they're
going to say, "Well, we don't know how to do that yet

Page 3 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

in a sprint," and to me that remains undone work. If I
do six sprints, at the end of the first sprint, I have
some undone work, at the end of the second sprint, I
have some undone work, and it keeps accumulating.
Unfortunately, it doesn't accumulate linearly. As you
don't do work sprint after sprint, it piles on so you're
not doing some work that's piling up to what you didn't
do in the first sprint, third sprint, second sprint, and so
the amount of work that you're not doing tends to
accumulate in some of logrhythmic pattern, not sure
exactly what it is but it is certainly more than linear.

Scott Hanselman: Interesting. It feels like when I
did my first Scrum, when the CTO of the company
that I worked at before I went to work for Microsoft,
brought in some Scrum training and we had a number
of folks becomes Scrum masters. They put the entire
division, every developer went through Scrum training
and we said we are doing Scrum as a company. We
dedicated ourselves to it and we sat down and we
started to ask ourselves what was done, sort of
realize how little we have been doing in the past,
which was interesting, but more interestingly, how
much work needs to be done made us feel like we
were getting less done. I guess what I'm trying to say
is that we were concerned when looking at Scrum that
what we perceived as the most important piece of
work, the code, is getting squeezed and we're going
to spend all this time writing documentation and doing
testing things like that. Is that a common perception
that someone says that "Gosh, the speed at which we
are getting things done is less because look, we are
having to do all this administrivia."

Ken Schwaber: Yes.

Scott Hanselman: Just to make someone feel like
we are done.

Ken Schwaber: I believe in every programmer's
head, there's a little person who has a metronome
that goes at a certain pace and if we don't go at that
pace, then we're falling behind.

Scott Hanselman: Right, I agree.

Ken Schwaber: And so if we take the time to
actually test our code and this is a whole range of
testing it and perhaps even document it to make sure
that it works as documented; then we are not going as
fast as we should. At that point, we kind of panic and
we throw all that stuff over the board and say we'll do
that later because that's not really customer stuff,
that's other stuff.

Scott Hanselman: Right, administration. It's just
administrivia we call it.

Ken Schwaber: Right. Well, acceptance test
driven development blows all this out the water
because you're defining the acceptance test that will
prove whether it works right at the front and then you

go off and you document it. You set up the test for it,
you set up the code for it and then you try to see
whether it works as the test described and it works as
the documentation describes, and that's a complete
piece of code. If it is not, you circle back and get it
complete. If it is, then you go back and pick up
another piece of code. Now, that's talking about
everything that's customer phasing being done within
a piece of word called Done.

Scott Hanselman: It seems to me like
programmers and engineers are deeply interested in
delivering code and if we're not slapping the keyboard
and making our curly braces or whatever language
we're using, we're not productive. That means that
we are fundamentally disconnecting with the whole
point which is to make a happy customer.

Ken Schwaber: Well, this goes to the point of a
flaw, almost a genetic flaw that has occurred in
programmers that's come up from waterfall and this is
that we are willing to cut quality to increase velocity or
to increase the drumbeat that the little person has in
our head.

Scott Hanselman: Exactly.

Ken Schwaber: And so I can sit at a desk and I
can do things the right way, maybe think about how
something is supposed to be done and where to fit
the design, and what after we refactored to do and
then the coding for the test and that might give me an
hour, but if someone tells me that this is really
important, I’ve got a deadline to meet and stop fooling
around, this is really serious, I can do that same work
in 10 minutes by only doing the coding and slapping it
onto something written and refactoring it. So that's
where we come up with the idea that only the code is
what matters.

Scott Hanselman: Yeah.

Ken Schwaber: Unfortunately, with this result in
them, because we've cut the definition of Done, it's a
Done deficit or undone, which is where we strangely
enough get hard things like high maintenance, low
sustainability software.

Scott Hanselman: It feels like there is a synergy
between the Scrum methodology and what has been
happening in productivity with David Allen's Getting
Things Done way of thinking. It's kind of like the new
Stephen Covey. I'm not sure if you're familiar with
David Allen's Getting Things Done.

Ken Schwaber: No.

Scott Hanselman: It's called GTD and it has been
-- the whole concept of his productivity style is that
one has a mental backlog of all the things that are
causing new psychic weight, that's what he calls it,
and psychic weight can be anything in your life from

Page 4 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

write some code to clean out the garage and you can't
release that psychic weight until you actually had it
written down and that's backlog items, put every
single thing that needs to be done. Then you can
release that because it is in a trusted source, and
then the most important thing about his solution which
I think can be applied to something like Scrum is what
is the next action required to move this thing forward,
not at the project level, but what is the very next
action. For example, if I'm going to paint my house...

Ken Schwaber: Yes.

Scott Hanselman: That is my backlog item, paint
my house. What is the very next action required?
Well, it might be something very trivial like get the
phone number of the painter.

Ken Schwaber: But it's what I know, what it has
to be, rather than me looking for any painter I can find
under the table and starting to paint.

Scott Hanselman: Exactly, but the programmer's
mind wants to just start painting, "I've got some paint.
I'll just start slapping paint on the wall. It will work
itself out."

Ken Schwaber: Well, the most suspicious thing
in any organization are teams that have a velocity of
10, 12, that might be the average within your
organization, but another team is able to get a velocity
of 20, 25. Amazingly, if you look at their code and the
tests around it, they have changed the definition of
Done to increase that.

Scott Hanselman: Say something about velocity
because I don't think necessarily, all of our listeners
are familiar with the concept and the numbers
associated with Velocity.

Ken Schwaber: If we have a list of things that a
customer wants to have done, this is how many of
those things we're able to get done as a team over a
period of time which might be like a monthly iteration.
So, velocity might be 20 pieces of requirements or a
product backlog that we're going to get done over a
sprint. Now, if we are able to change the definition of
Done to minimize testing, to minimize design, to
minimize refactoring, you can raise that incredibly.
However, if within an organization, everyone has the
same definition of Done and it's something that's
potentially shippable, then I can really compare one
team to another.

Scott Hanselman: Interesting. I think that that
idea of having a common agreement across either
groups or divisions make the statistics have value.
Otherwise they're useless, they're just numbers.

Ken Schwaber: Otherwise, they are useless
and an interesting way of making so the statistics are
relevant is all the teams that are working on a similar

set of software, let's say a similar release of software,
have to have the same definition of Done otherwise
their code won't integrate during the sprint and won't
be integrated at the end of the iteration or sprint, and
so this becomes an organization why definition rather
than just simply for a single team.

Scott Hanselman: Let's just take a moment right
now to thank our sponsors and we will come right
back with Ken Schwaber and we'll talk a little bit more
about what is Done.

Do you know how to make the possible out of the
impossible? Well, the .NET ninjas at Telerik do.
They just released a huge pack of web controls all
built on top of ASP.NET AJAX that will help you build
impossibly fast and interactive applications in no time
at all. They have made the impossible possible in
desktop development. If you think you can't have a
Carousel component in Win Forms, well, you can.
Their Windows Forms Suite features a super powerful
GridView control and 32 other crazy desktop
components that will give you dazzling WPF-like
features, but in Win Forms. They do the same thing
in reporting solutions with a new design surface like
nothing else. It looks just like graph paper because of
the advanced page layout capabilities. It makes it feel
more like a graphic design software than a reporting
solution. Go check them out at telerik.com and be a
.NET ninja. Thanks for listening.

This week's Hanselminutes is brought to you by
CodeBetter.com. The CodeBetter.com Blog Network
is made up of over 20 industry leaders and speakers
who are passionate about delivering tried and true
solutions to real world problems for building better
software. These guys are not only our sponsor this
week but they are also my friends. The
CodeBetter.com Blog Network, i t 's where industry
leaders blog. You can find them at CodeBetter.com
as well as Devlicio.us.

And we're back. We're talking to Ken Schwaber
about what is Done. You were going to say
something sir about the relationship that happens
between the customer and the developer and how the
definition of Done can affect that relationship.

Ken Schwaber: Yes, we've talked about how
Done is necessary so a team knows how many items
to select and so it knows what development process
goes through within a sprint to create something and
so that there is no undone work left at the end of the
project for the team to stabilize. However, this
changes a long-term, a long time-honored relationship
between customers who we now call product owners,
and the developers on Scrum team. Normally, a
product owner would come in if they needed
something more done than they had anticipated in a
project and they will tell the team, "Hey, we've got
some more things. We've got some more stuff for our
customers. We've got some more functionality that

Page 5 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

we need to get into this release and it's just critical."
And the team would look up and say, "Well, yeah, but
we don't have any more time to do that," and the
product owner will look at them even more clearly in
the face and say, "You don't understand. This is
really, really important." The team would say, "Oh,
now we understand. It's that important that if we don't
do it, you're going to go to our managers’ managers’
managers and we’re all in deep trouble if we don't do
it." So at this point in time, the developing team does
what would do, what it always has done in this
relationship which is it cuts quality, that is it reduces
the amount of stuff that is included in what's done to
simply increase the amount of stuff that can be
claimed as done, and as I have mentioned earlier,
they can drastically increase their velocity by doing
this. They might increase it by up to four, five,
certainly enough to accommodate almost any
increase in things that a customer's product only has
to be four. I think this has led to a deep seated belief
by all the customers that in general, we sit around as
developers with our feet up on the desk. Maybe I'm
playing with surfing the web or looking at pornography
or doing something but it's certainly not doing the
work that they want, and all they have to do is tell us
that it is really important for us to do it and we will put
our feet down and we will sit forward and we will really
crank out the code like we always have. What they
don't know is that we cut quality by reducing the
definition of Done to Do it. So this changes the
relationship between the product owner and the team.
The team now has the definition of Done. The
definition of Done is something that is potentially
shippable. This is something which is poor quality, it's
maintainable, sustainable, and enhance-able code,
and yet the product owner doesn't necessarily know
about this and so they will come to the team and say,
"Guys, you got to get more done." And the team
can't. The team is stuck with the definition of Done
and so their Velocity is fairly static. You can't change
your Velocity by more than 5% to 10% within any
sprint by any technique other than cutting quality.
Adding people won't do it, increasing your engineering
tools won't do it. So they have to really look back at
the product owner and say, "Excuse me but this is our
definition of Done, we can't do anymore." So with the
definition of Done being in place, the team can no
longer produce more by reducing the definition of
Done. This leaves the product owner with the
question of how do they get changes get taken cared
of? How do they get the work that they are used to
asking the team to do at the last minute done? Scrum
gives the product owner, the customer, another
variable that they can work with that they've never
had be fo re . This is the ability to iteratively,
incrementally, build the product. In the PS, they had
to say, "This is everything we want. Here it is, do it."
Then later, come in and say, "Oh, by the way, and do
this more." Now, what the product owner can do is
they can ask for the product to be built piece by piece
by piece. Highest value piece, then next highest
value piece, next value piece, and when they get

done with all the functional that they think is valuable,
they can stop. So this means that at any point in
time, they can trade off functionality that's in cue to be
built with other functionality that is more valuable.
This works extremely well when you take two
statistics into account. One is 35% of all functionality
changes during a release. So this is 35% of the cue
of work that a product owner had wanted before that's
open for change, and 50% to 60% of all functionality
in any release that's rarely or never needed. So what
we've given our product owners is the ability to piece-
by-piece managed what they are getting into the
release so that they can constantly optimize the value
and return of investment. They will never do this as
long as they are used to believing that all they have to
do is tell the developers to do more and the team will.
They will only do this when they believe that that is
not an option and they have to optimize the value of
the release rather than just trying for more and more
and more. This is a big change for our customers.
This is a big change for our developers. Simply by
introducing the value of the word Done, we have
changed a relationship and we've also started to
increase the quality, sustainability, and the team
ability of our products.

Scott Hanselman: You talked about the
prioritization and deciding that what I need to get
done once I've defined what Done is, I can say I want
the most high value things first. How do those
business needs and ranking the order in which I want
to finish my backlog items, how can those constraints
be reconciled architecturally to finish this most
important business thing that we require these
designs or these underlying or I simply can't do
priority one thing before priority five because of the
way that I see the design in my head. The natural
value order of the business need may not necessarily
be friendly to the architect.

Ken Schwaber: Right, usually we're used to
thinking of architecture as being done before we start
developing software and then we hang the software
from the architecture and the infrastructure. If we are
listing the work that the customer wants done, we're
listing the requirements they want, we're also listing
the nonfunctional requirements that are needed to
support the functional requirements at the PC, at the
security, at the other requirements technique. So
those are the top priority product backlog items that
need to be done. In Scrum, every sprint has to have
at least one piece of business functionality, so in the
very first sp r i n t , we may have one piece of
functionality and a lot of architectural infrastructural
items being built. In the second sprint, we might have
a little more business functionality and a little less
architectural infrastructural work being done. This
means that in every sprint, some of the architecture
and infrastructure is going in but it emerges, we don't
build it up front all at once. We let it emerge based on
business requirements. This means that at any point
in time, we'll never have more architecture than the

Page 6 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

business functionality that we built demands. It also
means that the code that we write had better be very
clean, very refactored, and very well documented,
otherwise, when we get to the second sprint and we
try laying more code on top of it, we will have a bloody
mess.

Scott Hanselman: I see, so the more
appropriately refactored your code is, the more
friendly it is the code itself being agile enough to be
modified for future requirements.

Ken Schwaber: Exactly, and this is where that
word Done really comes into play because if you take
a short cut with Scrum, it's going to catch up with you
within three or four sprints, not three or four releases.

Scott Hanselman: So what about cross-cutting
concerns about things like security throughout and
logging throughout and things that don't -- the kinds of
backlog items that one finds hanging around, sprint
after sprint. Maybe they are poorly written backlog
items because they're something like logging.

Ken Schwaber: So you might have logging if
it's a product backlog item in the first and it's logging
for this one piece of functionality. So you're only
putting enough to do that one piece, and in the
second sprint, you're doing a logging for another
piece, then third piece, or you might hit logging and
break it down into customer needs logging and we will
b e l ogging at this type of capability. So you
decompose it further and further. So you're putting in
just enough to support the business requirement.

Scott Hanselman: What about when a
requirement takes a dramatic right turn in a direction
that maybe you didn't see? If someone builds a
logging infrastructure to log text files, s uddenly the
customer changes the requirement, you need to log
into the cloud and we're just simply not prepared for
that.

Ken Schwaber: W e w o u l d n 't have been
prepared if we had tried to include the architecture up
front. The only difference is that we want to build a lot
of things that we have to tear apart. Instead we will
be able to just start from where we are.

Scott Hanselman: I see. I'm hearing you say that
it's that accidental complexity that comes from trying
to think too much about the architecture that we might
need…

Ken Schwaber: Yes.

Scott Hanselman: As opposed to being driven by
exactly what we are told we need.

Ken Schwaber: If we look historically, we're
driven to build architecture and infrastructure at the
start of the project. If you're using waterfall, that is

because if you change any requirement at the start of
the project, it will only cost you a dollar. Sixty percent
of the weight of the project since we build all the
architecture and infrastructure at the start, it might
cost us a hundred dollars, so we try to be perfect up
front. If we are using the ideas, of refactoring in
merchant architecture, then we don't need to be
perfect. We're constantly adjusting it to meet the
requirements. However, this does require
tremendously good engineering skills which remove
your ability to devolve from the word Done into some
crap.

Scott Hanselman: It removes your ability to fake
it.

Ken Schwaber: And completely. If you try
faking it with enforcements, you'll be caught.

Scott Hanselman: Yeah, interesting.

Ken Schwaber: S o s u d d e n l y you h a v e a
reason to write really good software and you always
have a reward for writing really good software.

Scott Hanselman: It's interesting, a number of
people had said to me that -- I have said this before -
-- that agile is using it as an excuse to be sloppy but
I've found when I have been working with really good
Scrum masters, it's a much more formal process than
really any process I've ever worked on.

Ken Schwaber: It has consequences at the end
of every sprint if everyone is paying attention. The
Scrum master is the one we hold responsible for the
product without knowing what's being seen at the end
of the sprint. If the definition of done is that
something will be completely done and tested, the
Scrum master is not allowed to let product see
something that does not meet their criteria. So they
likely judge the referee in a football field.

Scott Hanselman: That brings up an interesting
question as in what does a failed sprint look like and
what do we do about it?

Ken Schwaber: Failed sprint is an awful
phrase. Sprints don't fail or succeed. Things simply
happen within them.

Scott Hanselman: Okay.

Ken Schwaber: So if we select some product
backlog items which have lots of architectural work in
it and we don't get done with that within a sprint
because it turns out bigger than we thought, we will
re-estimate the amount of work remaining on those
items and put them back in the product backlog,
hopefully the product owner will reselect them for the
next sprint but they are not done. They are not
demonstrable. Simply, there remains less work to be
done on them.

Page 7 of 7

What is Done? - A Conversation with Scrum Co-Creator Ken Schwaber

June 26, 2008

Transcription by PWOP Productions, http://www.pwop.com

Scott Hanselman: Can it be possible that one
would have a sprint and maybe because of the length
of the sprint or the inappropriate size of the backlog
items that they have nothing that they can
demonstrate at the end of the sprint?

Ken Schwaber: Yes, absolutely. Wonderful.
Then we sit down with them and say "Wow, that was
really pretty terrible. So how can we now select a
more appropriate amount?" Typically teams will by
the time they get into their third sprint know how much
they can select and how much they can do within a
sprint. It tends to be a self-learning process.

Scott Hanselman: So when a team is decided to
start using Scrum, they don't have to necessarily take
it all at once. They can just pick something and try to
improve that.

Ken Schwaber: Yeah, absolutely and often
when they think they're doing it all at once imperfectly,
they will discover that they're not and what they do
have to improve.

Scott Hanselman: What kind of preparations
should they make for management in a sense of we
are not going to become immediately and incredibly
effective just because we have moved from one
process to Scrum? What can I do to prepare, I mean
how much overhead is there for the startup of an agile
practice at a previously not agile shop?

Ken Schwaber: None. If you prepare, you will
be preparing what you think is the most important
step to prepare and you have no idea what the teams
are really going to need. So, far better to let a team
start with some product backlog that they can find
somewhere and do their best to turn it into something
that is done by the end of the sprint and in the
process of doing this, you'll find everything that they
don't know, everything they need to know, and those
then become the things that you can put in place to
help them.

Scott Hanselman: I t s ounds like the only
overhead is just the act of deciding.

Ken Schwaber: Yup.

Scott Hanselman: This is kind of Schrödinger's
Cat view of agile where you're not going to know until
you just open the box.

Ken Schwaber: Absolutely and this I think
translates back to again the waterfall approach of let's
plan and get it perfect before we start. First is the
Scrum approach which says there is so much
complex you can never know what's needed, so just
start and then you'll know what you need. Feels far
riskier, but in Scrum your risk is never greater than
one sprint.

Scott Hanselman: Very cool. Well, that's all the
time we have got and I thank you so much for sitting
down with me today, Ken Schwaber, and we'll see
you again next week on Hanselminutes.

Ken Schwaber: Thank you.

